viernes, 3 de diciembre de 2010

PREPARACION DE MEIOS DE CULTIVO

Preparación de medios de cultivo.
Bacteriología II.
O B J E T I V O
El objetivo de la presente práctica es aprender a preparar correctamente los principales de medios de cultivo que se utilizan en el laboratorio de Bacteriología, como instrumentes de suma importancia en la dignosticación de bacterias patógenas dentro de los individuos. Asimismo, conocer los diferentes tipos de cultivo, su calcificación y su importancia en la diagnosticación.
I N T R O D U C C I Ó N
Un método fundamental para estudiar las bacterias es cultivarlas en un medio líquido o en la superficie de un medio sólido de agar. Los medios de cultivo contienen distintos nutrientes que van, desde azúcares simples hasta sustancias complejas como la sangre o el extracto de caldo de carne. Para aislar o purificar una especie bacteriana a partir de una muestra formada por muchos tipos de bacterias, se siembra en un medio de cultivo sólido donde las células que se multiplican no cambian de localización; tras muchos ciclos reproductivos, cada bacteria individual genera por escisión binaria una colonia macroscópica compuesta por decenas de millones de células similares a la original. Si esta colonia individual se siembra a su vez en un nuevo medio crecerá como cultivo puro de un solo tipo de bacteria. Muchas especies bacterianas son tan parecidas morfológicamente que es imposible diferenciarlas sólo con el uso del microscopio; en este caso, para identificar cada tipo de bacteria, se estudian sus características bioquímicas sembrándolas en medios de cultivo especiales. Así, algunos medios contienen un producto que inhibe el crecimiento de la mayoría de las especies bacterianas, pero no la de un tipo que deseamos averiguar si está presente. Otras veces el medio de cultivo contiene determinados azúcares especiales que sólo pueden utilizar algunas bacterias. En algunos medios se añaden indicadores de pH que cambian de color cuando uno de los nutrientes del medio es fermentado y se generan catabolitos ácidos. Si las bacterias son capaces de producir fermentación, generan gases que pueden ser apreciados cuando el cultivo se realiza en un tubo cerrado. Con otros medios de cultivo se identifica si las bacterias producen determinadas enzimas que digieren los nutrientes: así, algunas bacterias con enzimas hemolíticas (capaces de romper los glóbulos rojos) producen hemólisis y cambios apreciables macroscópicamente en las placas de agar-sangre. Los diferentes medios y técnicas de cultivo son esenciales en el laboratorio de microbiología de un hospital, pues sirven para identificar las bacterias causantes de las enfermedades infecciosas y los antibióticos a los que son sensibles esas bacterias.
Los requerimientos necesarios para un cultivo de bacterias son:
  • Medio de carbono.
  • Presencia o ausencia de oxigeno.
  • Atmósfera adecuada.
  • Agar-agar.
Para un cultivo adecuado de bacterias y microorganismos, se utiliza el agar, un gel coloidal formado por hidratos de carbono, de extendido uso comercial, y que proviene de las paredes celulares de varias especies de algas rojas, en concreto de miembros orientales del género Gelidium. Se utiliza como agente solidificante en la preparación de dulces, cremas y lociones, así como en las conservas de pescado y carne; para texturizar y emulsionar los helados y postres congelados; para clarificar, durante el proceso de fabricación del vino y la elaboración de la cerveza; y también para dar apresto (almidonar) las telas. Además, es un excelente medio de cultivo de bacterias, ya que no se disuelve por el efecto de las sales, ni se consume por la acción de la mayoría de los microorganismos.
El agar se extrae de las algas marinas haciéndolas hervir. Posteriormente, el producto resultante se deja enfriar y secar, y al final se solidifica en pastillas o en escamas. En un principio se llamó agar-agar, un término que se utiliza en Malasia para denominar a un alga local.
Pero existen diferentes tipos de agar de acuerdo a las especificidades que cada uno tenga, sin embargo cada tipo de agar debe de cumplir con los requerimientos:
Fuente de energía.- Las bacterias pueden ser fotótrofas o quimiotótrofas. Las fototótrofas absorben energía del sol y las quimiotótrofas de compuestos orgánicos.
Fuente de carbono.
Fuente de nitrógeno.- Las bacterias pueden obtener el nitrógeno atmosférico a través de las proteínas o por la degradación de aminoácidos o péptidos.
Azufre y fosfatos.- La obtienen como elemento(S), y como fosfatos en sales (P).
Vitaminas.
Agua.- Medio de transporte que permite una mejor absorción de los nutrimentos.
También requiere de los requerimientos nutricionales óptimos para su desarrollo:
Proteínas.- Se suministran generalmente peptonas, que se encuentran disponibles en el comercio, preparadas por digestión parcial de carne con enzimas peptídicas; consisten en polipéptidos, dipéptidos y aminoácidos.
Carbohidratos.- Sumistran carbono para la síntesis, y además su fermentación libera energía utilizable en el metabolismo.
Factores accesorios de crecimiento.- Son también requerimientos por algunas bacterias. Entre ellos están las vitaminas del complejo B; estas suministran enzimas necesarias para que las bacterias que son incapaces de sintetizar otros factores necesarios para algunas bacterias son obtenidos de los nutrimentos más complejos.
Sales minerales.- Elementos como K, Ca, Na, etc.; también son requeridas por algunas bacterias en su desarrollo.
Atmósfera.- Algunos microorganismos precisan oxígeno para su desarrollo, otros son incapaces de reproducirse en presencia de este elemento, en cambio otros organismos pueden crecer en una atmósfera con oxígeno, logran sobrevivir y crecer sin el, se les llama anaerobios facultativos.
Presión osmótica.- Las células pueden encogerse y ser destruidas en soluciones hipertónicas; inversamente se rompen por entrada de agua, en las soluciones hipotónicas.
Temperatura.- La temperatura para la cual los organismos microbianos crecen mejor, es considerada como temperatura óptima.
Luz.- La mayoría de las bacterias se desarrollan mejor en ausencia de luz. La luz ultravioleta puede ser letal.
Reacción.- La mayoría de las bacterias crece en un medio ligeramente alcalino (pH 7.2 a 7.6). Los hongos crecen con facilidad en los medios ácidos (pH 5).
Actualmente existen diferentes formas y métodos de cultivar en el mercado, ya que pueden cultivarse en placas, tubos etc.
Método de placas.- El propósito de usar medios sólidos pulverizados en cajas petris, consiste en inocular cantidades sucesivas menores de material en el medio, de manera que en algún tiempo sean colocados en una capa tan delgada que les permita el crecimiento de colonias individuales aisladas.
Medios inclinados.- Este tipo de cultivo es empleado principalmente para resembrar cepas aisladas, sea para identificación interior o para base cultivo.
Cultivos por agitación.- Este medio de cultivo es empleado particularmente en el aislamiento de anaerobios esporulado. Se calienta un tubo o botella a 50°C y luego se deja enfriar.
Cultivos por picadura.- En este método el material de laboratorio es colocado en un alambre recto e introducido al medio. El método puede ser también empleado para conservar los cultivos patrón.
Cultivos líquidos.- Al inocular en un medio líquido como el agua con peptona o el caldo con tioglicolato, el tubo se inclina y el material se extrae del asa por frotamiento contra la pared del tubo.
De acuerdo a las especifidades de cada medio pueden clasificarse en:
Medios básicos.- Son los medios más simples, contienen extracto de carne, peptona, sal y agua. El extracto o infusión de carne proporciona aminoácidos, vitaminas, sales y pequeñas cantidades de elementos como C, N y otros elementos. Ejem: Agar de infusión, Agar cerebro-corazón.
Medios enriquecidos.- Son aquellos medios básicos que han sido complementados con líquidos corporales, vitaminas específicas, aminoácidos, proteínas y otros nutrientes. Ejem: Agar sangre y agar chocolate.
Medios selectivos.- Son medios de agar básico, enriquecidos agregándole ciertos reactivos que impiden el crecimiento de la mayoría de las bacterias y permitiendo el desarrollo de unas cuantas. Ejem: Agar con sangre y bilis al 40%, Agar sal y manitol.
Medios diferenciales.- Son medios a los que se les han agregado ciertos que reaccionan con un tipo específico de bacterias. Ejem: Agar de McConckey, Agar EMB, Agar XLD.
Medios de enriquecimiento.- Son los medios que contienen alguna sustancia inhibidora por lo que se crea un medio favorable para límites mas estrechos de bacterias. Ejem: Agar S.S., Agar de Lowensten-Jensen.
Medios especiales.- Son los medios para comprobar una o más caracteríziticas bioquímicas. Ejem: Agar TSI, Agar CIT, Agar LIA, Agar MIO.

ESTIRILIZACION INDUSTRIAL

Comprende todos los procedimientos físicos, mecánicos y preferentemente químicos, que se emplean para destruir gérmenes patógenos. A través de esta, los materiales quirúrgicos y la piel del enfermo alcanzan un estado de desinfección que evita la contaminación operatoria.
Métodos:
Químicos: Con oxido de etileno
Aldehídos
Gas-plasma de Peroxido de Hidrogeno
Físicos:
Calor Radiaciones
Filtración
Agentes esterilizantes y desinfectantes
2. Métodos Químicos
Estos métodos provocan la perdida de viabilidad de los microorganismos.
Con oxido de etileno:
Es un agente alquilante que se une a compuestos con hidrógenos lábiles como los que tienen
grupos carboxilos, amino, sulfhidrilos, hidroxilos, etc.
Es utilizado en la esterilización gaseosa, generalmente en la
industria farmacéutica. Destruye todos los microorganismos incluso virus. Sirve para esterilizar material termosensibles como el descartable (goma, plastico, papel, etc.), equipos electrónicos, bombas cardiorrespiratorias, metal, etc. Es muy peligroso por ser altamente inflamable y explosivo, y además cancerigeno.
Con aldehídos:
Son agentes alquilantes que actúan sobre las
proteínas, provocando una modificación irreversible en enzimas e inhiben la actividad enzimática. Estos compuestos destruyen las esporas.
Glutaraldehído:
Consiste en preparar una solución alcalina al 2% y sumergir el material a esterilizar de 20 a 30 minutos, y luego un enjuague de 10 minutos.
Este
método tiene la ventaja de ser rápido y ser el único esterilizante efectivo frío. Puede esterilizar plástico, goma, vidrio, metal, etc.
Formaldehído:
Se utilizan las pastillas de paraformaldehido, las cuales pueden disponerse en el fondo de una caja envueltas en gasa o
algodón, que después pueden ser expuesta al calor para un rápida esterilización (acción del gas formaldehído). También pueden ser usadas en Estufas de Formol, que son cajas de doble fondo, en donde se colocan las pastillas y se calienta hasta los 60° C y pueden esterilizar materiales de látex, goma, plásticos, etc.
Las pastillas de formalina a
temperatura ambiente esterilizan en 36 hs.
Esterilización por gas-plasma de Peróxido de Hidrógeno
Es
proceso de esterilización a baja temperatura la cual consta en la transmisión de peróxido de hidrógeno en fase plasma (estado entre líquido y gas), que ejerce la acción biocida.
Posee como ventajas:
  • No deja ningún residuo tóxico.
  • Se convierte en agua y oxígeno al final del proceso.
  • El material no precisa aireación.
  • El ciclo de esterilización dura entre 54 y 75 minutos.
Desventajas:
  • No se pueden esterilizar objetos que contengan celulosa, algodón, líquidos, humedad, madera o instrumental con lúmenes largos y estrechos.
  • Es el método de esterilización más caro de entre los descritos.
3. Métodos físicos
Calor
La utilización de este método y su
eficacia depende de dos factores: el tiempo de exposición y la temperatura.
Todos los microorganismos son susceptibles, en distinto grado, a la acción del calor. El calor provoca desnaturalización de proteínas,
fusión y desorganización de las membranas y/o procesos oxidantes irreversibles en los microorganismos.
Calor Húmedo:
El calor húmedo produce desnaturalización y coagulación de proteínas. Estos efectos se debe principalmente a dos razones:
*
El agua es una especie química muy reactiva y muchas estructuras biológicas son producidas por reacciones que eliminan agua.
*El vapor de agua posee un coeficiente de transferencia de calor mucho más elevado que el
aire.
Autoclave
Se realiza la esterilización por el vapor de agua a
presión. El modelo más usado es el de Chamberland.
Esteriliza a 120º a una
atmósfera de presión (estas condiciones pueden variar)y se deja el material durante 20 a 30 minutos.
Equipo:
Consta de una caldera de
cobre, sostenida por una camisa externa metálica, que en la parte inferior recibe calor por combustión de gas o por una resistencia eléctrica, esta se cierra en la parte superior por una tapa de bronce. Esta tapa posee tres orificios, uno para el manómetro, otro para el escape de vapor en forma de robinete y el tercero, para una válvula de seguridad que funciona por contrapeso o a resorte.
Funcionamiento:
Se coloca agua en la caldera, procurando que su nivel no alcance a los objetos que se disponen sobre una rejilla de metal. Se cierra asegurando la tapa, sin ajustar los bulones y se da calor, dejando abierta la válvula de escape hasta que todo el aire se desaloje y comience la salidÔ9de vapor en forma de chorro continuo y abundante.

Tyndalización
Esterilización por acción discontinua del vapor de agua, se basa en el principio de TyndalÑ Las
bacterias que resisten una sesión de calefacción, hecha en determinadas condiciones, pueden ser destruidas cuando la misma operación se repite con intervalos separados y en varias sesiones.
Se efectúa por medio del autoclave de Chamberland, dejando abierta la válvula de escape, o sea funcionando a la presión normal. Puede también realizarse a temperaturas más bajas, 56º u 80º ocúpara evitar la descomposición de las sustancias a esterilizar, por las temperaturas elevadas.
Ventajas del calor húmedo:
  • Rápido calentamiento y penetración
  • Destrucción de bacterias y esporas en corto tiempo
  • No deja residuos tóxicos
  • Hay un bajo deterioro del material expuesto
  • Económico
Desventajas:
  • No permite esterilizar soluciones que formen emulsiones con el agua
  • Es corrosivo sobre ciertos instrumentos metálicos
Calor seco:
El calor seco produce desecación de
la célula, es esto tóxicos por niveles elevados de electrolitos, fusión de membranas. Estos efectos se deben a la transferencia de calor desde los materiales a los microorganismos que están en contacto con éstos.
La acción destructiva del calor sobre proteínas y lipidos requiere mayor temperatura cuando el material está seco o la actividad de agua del medio es baja.
Estufas
Doble cámara, el aire caliente generado por una resistencia, circula por la cavidad principal y por el espacio entre ambas cámaras, a temperatura de 170º C para el instrumental metálico y a 140º C para el contenido de los tambores.
Se mantiene una temperatura estable mediante termostatos de metal, que al dilatarse por el calor, cortan el circuito eléctrico.

Ventajas del calor seco:
  • No es corrosivo para metales e instrumentos.
  • Permite la esterilización de sustancias en polvo y no acuosas, y de sustancias viscosas no volátiles.
Desventajas:
  • Requiere mayor tiempo de esterilización, respecto al calor húmedo, debido a la baja penetración del calor.
Radiaciones
Su acción depende de:

  • El tipo de radiación
  • El tiempo de exposición
  • La dosi

generalidades de biorreactores


RESUMEN PRIMER PARCIALES..GENERALIDADES DE BIORREACTORES Y TIPO DE FERMENTACION..

En este parcial construimos una parte de nuestro conocimiento...
Por ello es que estoy aqui cursando  esto para el polo que va a tirar paro ...
poR que se qe hay muy pocas posibilidades de que lo revise..en el segundo parcial va esta leyenda...bueno la segunda parte..!!!Este callejón tiene la peculiaridad de que sus paredes están separadas por una distancia menor a 1.5 m y tiene dos balcones (uno de cada lado) que quedan a la misma altura. es el lugar ideal para visitar en guanajuato si vienen en pareja


La leyenda que cuentan es la siguiente:
Leyenda del porque se le llama "Callejón del beso" a uno de los lugares mas típicos de Guanajuato.


Se cuenta que doña Ana era hija única de un hombre intransigente y violento pero por fortuna, siempre triunfa el amor por trágico que éste sea.
Doña Ana era cortejada por un joven galán, don Luis. Al ser descubierta por su padre, sobrevinieron el encierro, la amenaza de enviarla a un convento, y lo peor de todo, casarla en españa con un viejo y rico noble, con lo que, además, acrecentaría el padre su mermada hacienda.
La bella y sumisa criatura y su dama de compañía, doña Brígida, lloraron e imploraron juntas, pero de nada sirvió.
Así, antes de someterse al sacrificio, resolvieron que doña Brígida llevaría una misiva a don Carlos con la infausta nueva.
Mil conjeturas se hizo el joven enamorado, pero de ella, hubo una que le pareció la más acertada.
Una ventana de la casa de doña Ana daba hacia un angosto callejón, tan estrecho que era posible, asomado a la ventana, tocar con la mano la pared de enfrente.
Si lograban entrar a la casa de enfrente, podría hablar con su amada y, entre los dos, encontrar una solución a su problema. Pregunto quién era el dueño de aquella casa y la adquirió a precio de oro.
Hay que imaginar cuál fue la sorpresa de doña Ana cuando, asomada a su balcón, se encontró a tan corta distancia con su joven enamorado.
Unos cuantos momentos habían transcurrido de aquel inenarrable coloquio amoroso, pues, cuando más abstraídos se hallaban los dos amantes, del fondo de la pieza se escucharon frases violentas. Era el padre de doña Ana increpando a Brígida, quien se jugaba la misma vida por impedir que su amo entrara a la alcoba de su señora.
El padre arrojó a la protectora de doña Ana, como era natural, y con una daga en la mano, de un solo golpe la clavo en el pecho de su hija.
Don Carlos enmudeció de espanto, pues la mano de doña Ana seguía entre las suyas, pero cada vez más fría.
Ante lo inevitable, don Carlos dejó un tierno beso sobre aquella mano tersa y pálida, ya sin vida.
Por esto a este lugar, sin duda unos de los más típicos de nuestra ciudad, se le llama el Callejón del Beso.
Y cuenta la leyenda que si dos enamorados pasan por el Callejón del Beso deben besarse para que su amor perdure.

jueves, 2 de diciembre de 2010

VALVULAS

Una válvula se puede definir como un aparato mecánico con el cual se puede iniciar, detener o regular la circulación (paso) de líquidos o gases mediante una pieza movible que abre, cierra u obstruye en forma parcial uno o más orificios o conductos.
Las válvulas son unos de los instrumentos de control más esenciales en la industria. Debido a su diseño y materiales, las válvulas pueden abrir y cerrar, conectar y desconectar, regular, modular o aislar una enorme serie de líquidos y gases, desde los más simples hasta los más corrosivos o tóxicos. Sus tamaños van desde una fracción de pulgada hasta 30 ft (9 m) o más de diámetro. Pueden trabajar con presiones que van desde el vació hasta mas de 20000 lb/in² (140 Mpa) y temperaturas desde las criogénicas hasta 1500 °F (815 °C). En algunas instalaciones se requiere un sellado absoluto; en otras, las fugas o escurrimientos no tienen importancia.
La palabra flujo expresa el movimiento de un fluido, pero también significa para nosotros la cantidad total de fluido que ha pasado por una sección de terminada de un conducto. Caudal es el flujo por unidad de tiempo; es decir, la cantidad de fluido que circula por una sección determinada del conducto en la unidad de tiempo.
La válvula automática de control generalmente constituye el último elemento en un lazo de control instalado en la línea de proceso y se comporta como un orificio cuya sección de paso varia continuamente con la finalidad de controlar un caudal en una forma determinada.
Las válvulas de control constan básicamente de dos partes que son: la parte motriz o actuador y el cuerpo.
  • Actuador: el actuador también llamado accionador o motor, puede ser neumático, eléctrico o hidráulico, pero los más utilizados son los dos primeros, por ser las más sencillas y de rápida actuaciones. Aproximadamente el 90% de las válvulas utilizadas en la industria son accionadas neumáticamente. Los actuadores neumáticos constan básicamente de un diafragma, un vástago y un resorte tal como se muestra en la figura (1-a.). Lo que se busca en un actuador de tipo neumático es que cada valor de la presión recibida por la válvula corresponda una posición determinada del vástago. Teniendo en cuenta que la gama usual de presión es de 3 a 15 lbs/pulg² en la mayoría de los actuadores se selecciona el área del diafragma y la constante del resorte de tal manera que un cambio de presión de 12 lbs/pulg², produzca un desplazamiento del vástago igual al 100% del total de la carrera.
Figura 1-a Actuador de una válvula de control.
  • Cuerpo de la válvula: este esta provisto de un obturador o tapón, los asientos del mismo y una serie de accesorios. La unión entre la válvula y la tubería puede hacerse por medio de bridas soldadas o roscadas directamente a la misma. El tapón es el encargado de controlar la cantidad de fluido que pasa a través de la válvula y puede accionar en la dirección de su propio eje mediante un movimiento angular. Esta unido por medio de un vástago al actuador.
Debido a las diferentes variables, no puede haber una válvula universal; por tanto, para satisfacer los cambiantes requisitos de la industria se han creado innumerables diseños y variantes con el paso de los años, conforme se han desarrollado nuevos materiales. Todos los tipos de válvulas recaen en nueve categorías: válvulas de compuerta, válvulas de globo, válvulas de bola, válvulas de mariposa, válvulas de apriete, válvulas de diafragma, válvulas de macho, válvulas de retención y válvulas de desahogo (alivio).
Estas categorías básicas se describen a continuación. Seria imposible mencionar todas las características de cada tipo de válvula que se fabrica y no se ha intentado hacerlo. Más bien se presenta una descripción general de cada tipo en un formato general, se dan recomendaciones para servicio, aplicaciones, ventajas, desventajas y otra información útil para el lector.
La válvula de compuerta es de vueltas múltiples, en la cual se cierra el orificio con un disco vertical de cara plana que se desliza en ángulos rectos sobre el asiento (fig. 1-1).
Figura 1-1 Válvula de compuerta.
  • Servicio con apertura total o cierre total, sin estrangulación.
  • Para uso poco frecuente.
  • Para resistencia mínima a la circulación.
  • Para mínimas cantidades de fluido o liquido atrapado en la tubería.
Servicio general, aceites y petróleo, gas, aire, pastas semilíquidas, líquidos espesos, vapor, gases y líquidos no condensables, líquidos corrosivos.
  • Alta capacidad.
  • Cierre hermético.
  • Bajo costo.
  • Diseño y funcionamiento sencillos.
  • Poca resistencia a la circulación.
  • Control deficiente de la circulación.
  • Se requiere mucha fuerza para accionarla.
  • Produce cavitación con baja caída de presión.
  • Debe estar cubierta o cerrada por completo.
  • La posición para estrangulación producirá erosión del asiento y del disco.
  • Cuña maciza, cuña flexible, cuña dividida, disco doble.
  • Materiales
  • Cuerpo: bronce, hierro fundido, hierro, acero forjado, Monel, acero fundido, acero inoxidable, plástico de PVC.
  • Componentes diversos.
  • Lubricar a intervalos periódicos.
  • Corregir de inmediato las fugas por la empaquetadura.
  • Enfriar siempre el sistema al cerrar una tubería para líquidos calientes y al comprobar que las válvulas estén cerradas.
  • No cerrar nunca las llaves a la fuerza con la llave o una palanca.
  • Abrir las válvulas con lentitud para evitar el choque hidráulico en la tubería.
  • Cerrar las válvulas con lentitud para ayudar a descargar los sedimentos y mugre atrapados.
  • Tipo de conexiones de extremo.
  • Tipo de cuña.
  • Tipo de asiento.
  • Tipo de vástago.
  • Tipo de bonete.
  • Tipo de empaquetadura del vástago.
  • Capacidad nominal de presión para operación y diseño.
  • Capacidad nominal de temperatura para operación y diseño.
La válvula de macho es de ¼ de vuelta, que controla la circulación por medio de un macho cilíndrico o cónico que tiene un agujero en el centro, que se puede mover de la posición abierta a la cerrada mediante un giro de 90° (fig. 1-2).
Figura 1-2 Válvula de macho.
  • Servicio con apertura total o cierre total.
  • Para accionamiento frecuente.
  • Para baja caída de presión a través de la válvula.
  • Para resistencia mínima a la circulación.
  • Para cantidad mínima de fluido atrapado en la tubería.
  • Servicio general, pastas semilíquidas, líquidos, vapores, gases, corrosivos.
  • Ventajas
  • Alta capacidad.
  • Bajo costo.
  • Cierre hermético.
  • Funcionamiento rápido.
  • Requiere alta torsión (par) para accionarla.
  • Desgaste del asiento.
  • Cavitación con baja caída de presión.
  • Lubricada, sin lubricar, orificios múltiples.
  • Materiales
  • Hierro, hierro dúctil, acero al carbono, acero inoxidable, aleación 20, Monel, níquel, Hastelloy, camisa de plástico.
  • Dejar espacio libre para mover la manija en las válvulas accionadas con una llave.
  • En las válvulas con macho lubricado, hacerlo antes de ponerlas en servicio.
  • En las válvulas con macho lubricado, lubricarlas a intervalos periódicos.
  • Material del cuerpo.
  • Material del macho.
  • Capacidad nominal de temperatura.
  • Disposición de los orificios, si es de orificios múltiples.
  • Lubricante, si es válvula lubricada.
Una válvula de globo es de vueltas múltiples, en la cual el cierre se logra por medio de un disco o tapón que sierra o corta el paso del fluido en un asiento que suele estar paralelo con la circulación en la tubería (fig. 1-3).
Figura 1-3 Válvula de globo.
  • Estrangulación o regulación de circulación.
  • Para accionamiento frecuente.
  • Para corte positivo de gases o aire.
  • Cuando es aceptable cierta resistencia a la circulación.
Servicio general, líquidos, vapores, gases, corrosivos, pastas semilíquidas.
  • Estrangulación eficiente con estiramiento o erosión mínimos del disco o asiento.
  • Carrera corta del disco y pocas vueltas para accionarlas, lo cual reduce el tiempo y desgaste en el vástago y el bonete.
  • Control preciso de la circulación.
  • Disponible con orificios múltiples.
  • Gran caída de presión.
  • Costo relativo elevado.
Normal (estándar), en "Y", en ángulo, de tres vías.
Cuerpo: bronce, hierro, hierro fundido, acero forjado, Monel, acero inoxidable, plásticos.
Componentes: diversos.
Instalar de modo que la presión este debajo del disco, excepto en servicio con vapor a alta temperatura.
Registro en lubricación.
Hay que abrir ligeramente la válvula para expulsar los cuerpos extraños del asiento.
Apretar la tuerca de la empaquetadura, para corregir de inmediato las fugas por la empaquetadura.
  • Tipo de conexiones de extremo.
  • Tipo de disco.
  • Tipo de asiento.
  • Tipo de vástago.
  • Tipo de empaquetadura o sello del vástago.
  • Tipo de bonete.
  • Capacidad nominal para presión.
  • Capacidad nominal para temperatura.
Las válvulas de bola son de ¼ de vuelta, en las cuales una bola taladrada gira entre asientos elásticos, lo cual permite la circulación directa en la posición abierta y corta el paso cuando se gira la bola 90° y cierra el conducto (fig. 1-4).
Figura 1-4 Válvula de bola.
  • Para servicio de conducción y corte, sin estrangulación.
  • Cuando se requiere apertura rápida.
  • Para temperaturas moderadas.
  • Cuando se necesita resistencia mínima a la circulación.
Servicio general, altas temperaturas, pastas semilíquidas.
  • Bajo costo.
  • Alta capacidad.
  • Corte bidireccional.
  • Circulación en línea recta.
  • Pocas fugas.
  • Se limpia por si sola.
  • Poco mantenimiento.
  • No requiere lubricación.
  • Tamaño compacto.
  • Cierre hermético con baja torsión (par).
  • Características deficientes para estrangulación.
  • Alta torsión para accionarla.
  • Susceptible al desgaste de sellos o empaquetaduras.
  • Propensa a la cavitación.
Entrada por la parte superior, cuerpo o entrada de extremo divididos (partidos), tres vías, Venturi, orificio de tamaño total, orificio de tamaño reducido.
Cuerpo: hierro fundido, hierro dúctil, bronce, latón, aluminio, aceros al carbono, aceros inoxidables, titanio, tántalo, zirconio; plásticos de polipropileno y PVC.
Asiento: TFE, TFE con llenador, Nylon, Buna-N, neopreno.
Dejar suficiente espacio para accionar una manija larga.
  • Temperatura de operación.
  • Tipo de orificio en la bola.
  • Material para el asiento.
  • Material para el cuerpo.
  • Presión de funcionamiento.
  • Orificio completo o reducido.
  • Entrada superior o entrada lateral.

La válvula de mariposa es de ¼ de vuelta y controla la circulación por medio de un disco circular, con el eje de su orificio en ángulos rectos con el sentido de la circulación (fig. 1-5).
Figura 1-5 Válvula de mariposa.
  • Servicio con apertura total o cierre total.
  • Servicio con estrangulación.
  • Para accionamiento frecuente.
  • Cuando se requiere corte positivo para gases o líquidos.
  • Cuando solo se permite un mínimo de fluido atrapado en la tubería.
  • Para baja ciada de presión a través de la válvula.
Servicio general, líquidos, gases, pastas semilíquidas, líquidos con sólidos en suspensión.
  • Ligera de peso, compacta, bajo costo.
  • Requiere poco mantenimiento.
  • Numero mínimo de piezas móviles.
  • No tiene bolas o cavidades.
  • Alta capacidad.
  • Circulación en línea recta.
  • Se limpia por si sola.
  • Alta torsión (par) para accionarla.
  • Capacidad limitada para caída de presión.
  • Propensa a la cavitación.
Disco plano, disco realzado, con brida, atornillado, con camisa completa, alto rendimiento.
Cuerpo: hierro, hierro dúctil, aceros al carbono, acero forjado, aceros inoxidables, aleación 20, bronce, Monel.
Disco: todos los metales; revestimientos de elastómeros como TFE, Kynar, Buna-N, neopreno, Hypalon.
Asiento: Buna-N, viton, neopreno, caucho, butilo, poliuretano, Hypalon, Hycar, TFE.
Se puede accionar con palanca, volante o rueda para cadena.
Dejar suficiente espacio para el movimiento de la manija, si se acciona con palanca.
Las válvulas deben estar en posición cerrada durante el manejo y la instalación.
  • Tipo de cuerpo.
  • Tipo de asiento.
  • Material del cuerpo.
  • Material del disco.
  • Material del asiento.
  • Tipo de accionamiento.
  • Presión de funcionamiento.
  • Temperatura de funcionamiento.
Las válvulas de diafragma son de vueltas múltiples y efectúan el cierre por medio de un diafragma flexible sujeto a un compresor. Cuando el vástago de la válvula hace descender el compresor, el diafragma produce sellamiento y corta la circulación (fig. 1-6).
Figura 1-6 Válvula de diafragma.
  • Servicio con apertura total o cierre total.
  • Para servicio de estrangulación.
  • Para servicio con bajas presiones de operación.
Fluidos corrosivos, materiales pegajosos o viscosos, pastas semilíquidas fibrosas, lodos, alimentos, productos farmacéuticos.
  • Bajo costo.
  • No tienen empaquetaduras.
  • No hay posibilidad de fugas por el vástago.
  • Inmune a los problemas de obstrucción, corrosión o formación de gomas en los productos que circulan.
  • Diafragma susceptible de desgaste.
  • Elevada torsión al cerrar con la tubería llena.
  • Tipo con vertedero y tipo en línea recta.
  • Materiales
  • Metálicos, plásticos macizos, con camisa, en gran variedad de cada uno.
Lubricar a intervalos periódicos.
No utilizar barras, llaves ni herramientas para cerrarla.
  • Material del cuerpo.
  • Material del diafragma.
  • Conexiones de extremo.
  • Tipo del vástago.
  • Tipo del bonete.
  • Tipo de accionamiento.
  • Presión de funcionamiento.
  • Temperatura de funcionamiento.

La válvula de apriete es de vueltas múltiples y efectúa el cierre por medio de uno o mas elementos flexibles, como diafragmas o tubos de caucho que se pueden apretar u oprimir entre si para cortar la circulación (fig. 1-7).
Figura 1-7 Válvula de apriete.
  • Servicio de apertura y cierre.
  • Servicio de estrangulación.
  • Para temperaturas moderadas.
  • Cuando hay baja caída de presión a través de la válvula.
  • Para servicios que requieren poco mantenimiento.
Pastas semilíquidas, lodos y pastas de minas, líquidos con grandes cantidades de sólidos en suspensión, sistemas para conducción neumática de sólidos, servicio de alimentos.
  • Bajo costo.
  • Poco mantenimiento.
  • No hay obstrucciones o bolsas internas que la obstruyan.
  • Diseño sencillo.
  • No corrosiva y resistente a la abrasión.
  • Aplicación limitada para vació.
  • Difícil de determinar el tamaño.
Camisa o cuerpo descubierto; camisa o cuerpo metálicos alojados.
Caucho, caucho blanco, Hypalon, poliuretano, neopreno, neopreno blanco, Buna-N, Buna-S, Viton A, butilo, caucho de siliconas, TFE.
Los tamaños grandes pueden requerir soportes encima o debajo de la tubería, si los soportes para el tubo son inadecuados.
  • Presión de funcionamiento.
  • Temperatura de funcionamiento.
  • Materiales de la camisa.
  • Camisa descubierta o alojada.
Hay dos categorías de válvulas y son para uso específico, más bien que para servicio general: válvulas de retención (check) y válvulas de desahogo (alivio). Al contrario de los otros tipos descritos, son válvulas de accionamiento automático, funcionan sin controles externos y dependen para su funcionamiento de sentido de circulación o de las presiones en el sistema de tubería. Como ambos tipos se utilizan en combinación con válvulas de control de circulación, la selección de la válvula, con frecuencia, se hace sobre la base de las condiciones para seleccionar la válvula de control de circulación.
La válvula de retención (fig. 1-8) esta destinada a impedir una inversión de la circulación. La circulación del líquido en el sentido deseado abre la válvula; al invertirse la circulación, se cierra. Hay tres tipos básicos de válvulas de retención: 1) válvulas de retención de columpio, 2) de elevación y 3) de mariposa.
Esta válvula tiene un disco embisagrado o de charnela que se abre por completo con la presión en la tubería y se cierra cuando se interrumpe la presión y empieza la circulación inversa. Hay dos diseños: uno en "Y" que tiene una abertura de acceso en el cuerpo para el esmerilado fácil del disco sin desmontar la válvula de la tubería y un tipo de circulación en línea recta que tiene anillos de asiento reemplazables.
  • Cuando se necesita resistencia mínima a la circulación.
  • Cuando hay cambios poco frecuentes del sentido de circulación en la tubería.
  • Para servicio en tuberías que tienen válvulas de compuerta.
  • Para tuberías verticales que tienen circulación ascendente.
Para servicio con líquidos a baja velocidad.
  • Puede estar por completo a la vista.
  • La turbulencia y las presiones dentro de la válvula son muy bajas.
  • El disco en "Y" se puede esmerilar sin desmontar la válvula de la tubería.
Válvulas de retención con disco inclinable.
Cuerpo: bronce, hierro fundido, acero forjado, Monel, acero fundido, acero inoxidable, acero al carbono.
Componentes: diversos.
  • En las tuberías verticales, la presión siempre debe estar debajo del asiento.
  • Si una válvula no corta el paso, examinar la superficie del asiento.
  • Si el asiento esta dañada o escoriado, se debe esmerilar o reemplazar.
  • Antes de volver a armar, limpiar con cuidado todas las piezas internas.
Una válvula de retención de elevación es similar a la válvula de globo, excepto que el disco se eleva con la presión normal e la tubería y se cierra por gravedad y la circulación inversa.
Figura 1-8 Válvula de retensión (tipo de elevación).
  • Cuando hay cambios frecuentes de circulación en la tubería.
  • Para uso con válvulas de globo y angulares.
  • Para uso cuando la caída de presión a través de la válvula no es problema.
Tuberías para vapor de agua, aire, gas, agua y vapores con altas velocidades de circulación.
  • Recorrido mínimo del disco a la posición de apertura total.
  • Acción rápida.
Tres tipos de cuerpos: horizontal, angular, vertical.
Tipos con bola (esfera), pistón, bajo carga de resorte, retención para vapor.
Cuerpo: bronce, hierro, hierro fundido, acero forjado, Monel, acero inoxidable, PVC, Penton, grafito impenetrable, camisa de TFE.
Componentes: diversos.
  • La presión de la tubería debe estar debajo del asiento.
  • La válvula horizontal se instala en tuberías horizontales.
  • La válvula vertical se utiliza en tubos verticales con circulación ascendente, desde debajo del asiento.
  • Si hay fugas de la circulación inversa, examinar disco y asiento.
Una válvula de retención de mariposa tiene un disco dividido embisagrado en un eje en el centro del disco, de modo que un sello flexible sujeto al disco este a 45° con el cuerpo de la válvula, cuando esta se encuentra cerrada. Luego, el disco solo se mueve una distancia corta desde el cuerpo hacia el centro de la válvula para abrir por completo.
  • Cuando se necesita resistencia mínima a la circulación en la tubería.
  • Cuando hay cambios frecuentes en el sentido de la circulación.
  • Para uso con las válvulas de mariposa, macho, bola, diafragma o de apriete.
Servicio para líquidos o gases.
  • El diseño del cuerpo se presta para la instalación de diversos tipos de camisas de asiento.
  • Menos costosa cuando se necesita resistencia a la corrosión.
  • Funcionamiento rápido.
  • La sencillez del diseño permite construirlas con diámetros grandes.
  • Se puede instalar virtualmente en cualquier posición.
Con camisa completa.
Con asiento blando.
Cuerpo: acero, acero inoxidable, titanio, aluminio, PVC, CPCB, polietileno, polipropileno, hierro fundido, Monel, bronce.
Sello flexible: Buna-N, Viton, caucho de butilo, TFE, neopreno, Hypalon, uretano, Nordel, Tygon, caucho de siliconas.
En las válvulas con camisa, esta se debe proteger contra daños durante el manejo.
Comprobar que la válvula queda instalada de modo que la abra la circulación normal.
Una válvula de desahogo (fig. 1-9) es de acción automática para tener regulación automática de la presión. El uso principal de esta válvula es para servicio no comprimible y se abre con lentitud conforme aumenta la presión, para regularla.
La válvula de seguridad es similar a la válvula de desahogo y se abre con rapidez con un "salto" para descargar la presión excesiva ocasionada por gases o líquidos comprimibles.
El tamaño de las válvulas de desahogo es muy importante y se determina mediante formulas especificas.
Figura 1-9 Válvula de desahogo (alivio).
Sistemas en donde se necesita una gama predeterminada de presiones.
Agua caliente, vapor de agua, gases, vapores.
  • Bajo costo.
  • No se requiere potencia auxiliar para la operación.
  • Seguridad, desahogo de seguridad.
  • Construcción con diafragma para válvulas utilizadas en servicio corrosivo.
Cuerpo: hierro fundido, acero al carbono, vidrio y TFE, bronce, latón, camisa de TFE, acero inoxidable, Hastelloy, Monel.
Componentes: diversos.
Se debe instalar de acuerdo con las disposiciones del Código ASME para recipientes de presión sin fuego.
Se debe instalar en lugares de fácil acceso para inspección y mantenimiento.
Nivel.
Es la distancia existente entre una línea de referencia y la superficie del fluido, generalmente dicha línea de referencia se toma como fondo del recipiente.
Métodos de medición.
Como se menciono anteriormente el nivel es la variable que puede ser medida mas fácilmente, pero existen otros factores, tales como viscosidad del fluido, tipo de medición deseada, presión, si el recipiente esta o no presurizado, que traen como consecuencias que existan varios métodos y tipos de instrumentos medidores del nivel. El medidor de nivel seleccionado dependerá de nuestras necesidades o condiciones de operación.
Los métodos utilizados para la medición del nivel de líquidos, básicamente pueden ser clasificados en: Métodos de medición directa y método de medición indirecta.
Métodos de medición indirecta:
Estos tipos de instrumentos se utilizan generalmente para llevar la medición a sitios remotos o para el control de nivel, aunque también pueden utilizarse como un indicador directo. Están compuestos principalmente por un desplazador, una palanca y un tubo de torsión.
La figura (a) muestra los componentes básicos de uno de estos medidores. Como podemos observar, el objetivo principal de estos componentes, es convertir el movimiento vertical del desplazador en un movimiento circular del tubo de torsión.
Figura (a)
El principio de funcionamiento se basa en el principio de Arquímedes y puede resumirse de la siguiente manera: el peso del desplazador ejerce una fuerza sobre el tubo de torsión, pero al subir el nivel, el desplazador desplaza más líquido y este ejercerá una fuerza o empuje sobre el desplazador, el cual se vuelve más liviano. Esto trae como consecuencia que el tubo de torsión gire debido a la disminución de la torsión, que el desplazador ejerce sobre el. Este giro es aprovechado acoplándose una aguja, la cual indicara el nivel directamente.
Al estudiar el objetivo referente a presión, deducimos un formula por la cual se estableció que la presión en cualquier punto debajo de la superficie del liquido, depende solamente de la profundidad a la cual se encuentre el punto en cuestión y el peso especifico del liquido, es decir, que . Como se recordara, esta presión es conocida como presión hidrostática.
Existen varios tipos de medidores de nivel que trabajan y operan bajo este principio, de los cuales los más comunes son:
Sistema básico o Manómetro.
Entre los medidores de nivel actuados por presión hidrostática, el sistema básico o manómetro es el más sencillo. Consta solamente de un manómetro y en el caso de que el líquido cuyo nivel se desea medir, sea corrosivo o viscoso, es necesario, además del manómetro, un equipo de sello con la finalidad de aislar el instrumento de dicho fluido.
El manómetro puede ser uno convencional, con la diferencia de que la escala en lugar de ser graduada en unidades de presión, es graduada en unidades de nivel.
Medidor de nivel mediante Presión Hidrostática
La figura 2-1 muestra una caja de diafragma Foxboro. Esta caja se sumerge en el líquido que se va a medir, y un capilar lleno de aire se extiende desde ella hasta el instrumento. La deflexión del diafragma, que se produce por la altura del líquido, provoca que el aire que contiene el capilar se comprima. El instrumento que recibe el aire del capilar responde indicando la altura del liquido que esta ejerciendo presión en el diafragma. La caja se construye en dos secciones, entre estas esta colocado el diafragma de caucho, o de una composición sintética resistente al aceite.
Figura 2-1 Diafragma-caja medidor de nivel de líquidos
(Cortesía de Foxboro Co.).
Para la medición de niveles en tanques al vació o bajo presión pueden utilizarse los instrumentos de medición del flujo por métodos de presión diferencial. La única diferencia es que el instrumento dará una lectura inversa; es decir, cuando señale caudal cero en medidas de flujo, se leerá nivel máximo en medidas de nivel. Deben tomarse precauciones para obtener la correspondiente respuesta del instrumento. Por ejemplo, es posible utilizar medidores de rango compuesto. Como estos instrumentos están diseñados para permitir el flujo en ambas direcciones, es posible utilizarlos para mediciones de nivel de líquido, teniendo la posición de cero en el interior de la grafica, moviéndose la pluma hacia su borde con el aumento de nivel.
El principio de funcionamiento se basa en aplicarle al instrumento la presión existente en la superficie del liquido en ambas conexiones con la finalidad de anularla y que la presión detectada, sea la presión hidrostática, la cual como se ha visto, la podemos representar en unidades de nivel.
Las mediciones de nivel que se basan en la presión que ejerce un líquido por su altura, implican que la densidad sea constante. El instrumento se debe calibrar para una densidad específica y cualquier cambio en ella trae consigo errores de medición. El método más simple para medir el nivel de un líquido en un recipiente abierto, es conectar un medidor de presión por debajo del nivel mas bajo que se va a considerar. Este nivel es, entonces, el de referencia y la presión estática indicada por el medidor es una medida de la altura de la columna del líquido sobre el medidor, y por lo tanto del nivel del líquido. El medidor de presión, cuando se usa para mediciones de nivel de líquidos, se calibra en unidades de presión, en unidades de nivel de líquido correspondientes a la gravedad específica del líquido, o en unidades volumétricas calculadas según las dimensiones del recipiente. También se puede calibrar de 0 a 100, lo que permite lecturas en términos de tanto por ciento de nivel máximo. Para que el medidor lea cero cuando el liquido esta en su nivel mínimo, a través del elemento accionador debe haber una línea horizontal aproximadamente al mismo nivel que la línea de centros de la toma de la tubería de mínimo nivel. En el medidor se pueden usar tornillos de ajuste a cero para compensar pequeñas diferencias. Para controlar el límite, el medidor de presión puede ser un controlador, o puede estar ligado a un interruptor de presión. Cuando no se requiere una indicación de nivel, este último es suficiente.
Cuando no se puede usar un diafragma, se puede instalar una caja sin este. Esto requiere que el líquido se encuentre libre de sólidos, que pueden obstruir el capilar. El líquido, mientras sube en la caja comprime el aire del capilar y el instrumento da la respuesta correspondiente.
Método de equilibrio de presión de aire
Este método se prefiere, normalmente, al de caja de diafragma si se dispone de aire o liquido para purga, aunque se puede aceptar un bombeo manual. Se puede aplicar ya sea desde lo alto del depósito o de las paredes laterales.
Un ejemplo del tipo de duplicador de presión es el transmisor de nivel de líquidos fabricado por la Taylor Instruments Company, y que se muestra en la figura 2-2. Este convierte la presión de la altura del líquido en una señal de aire que se transmite a un instrumento medidor de presión como receptor. La vista de la sección transversal, muestra al transmisor en la posición en la que se monta en le fondo del tanque, con la columna de agua cargando sobre el diafragma. Una tubería suministra aire al medidor de nivel a una presión de 3 a 5 psi, mas elevada que la correspondiente a la columna de líquido para nivel máximo. Otra tubería transmite la presión señal de nivel salida del medidor, a un receptor a distancia.
Figura 2-2 Transmisor de nivel de líquido
(Cortesía de Taylor Instrument Co.).
Métodos de medición directa:
Consiste en una varilla o regla graduada, de la longitud conveniente para introducirla dentro del depósito. La determinación del nivel se efectúa por lectura directa de la longitud mojada por el líquido. En el momento de la lectura el tanque debe estar abierto a presión atmosférica. Se utiliza generalmente en tanques de fuel oil o gasolina.
Medidor de sonda

Es el método de medir nivel por medio de cintas. El instrumento esta compuesto por tres partes principales que son: el carrete, la cinta graduada y un peso o plomada.
La plomada sirve para que se mantenga la cinta tensa al penetrar en el líquido. Para medir el nivel se deja que la cinta baje lentamente hasta que la plomada toque el fondo del recipiente. Unas ves que la plomada toca el fondo se empieza a recoger la cinta con el carrete, hasta que aparezca la parte donde el líquido ha dejado la marca que indica su nivel.
Otra forma simple y quizás la mas común de medir el nivel, es por medio del indicador de cristal. Estos tipos de indicadores sirven para varias aplicaciones y se pueden utilizar tanto para recipientes abiertos como para cerrados.
El indicador consiste de un tubo de vidrio, en el caso del indicador de bajas presiones y de un vidrio plano en el caso del indicador para altas presiones, montadas entre dos válvulas, las cuales se utilizan para sacar de servicio el indicador sin necesidad de parar el proceso.
Los instrumentos que utilizan un flotador-boya no dependen de la presión estática para medir el nivel de líquidos. De todos modos la presión estática debe tomarse en cuenta al proyectar el flotador; ya que siendo este hueco, ha de construirse lo suficientemente robusto como para soportarla sin deformarse.
El flotador se suspende de una cinta sometida a leve tensión. Conforme aquel se desplaza arriba o abajo, siguiendo el nivel del líquido, arrastra la cinta la cual hace girar una rueda catalina. La figura 2-3, muestra un transmisor de nivel de liquido Shand & Jurs que acoplado a un captador como el descrito convierte la posición de flotador en impulsos eléctricos. Los pulsos representan la información de nivel y se transmiten a estaciones de control remotas, para su lectura.
Figura 2-3 Esquema de un transmisor de nivel de líquidos.
(Cortesía de Shand & Jurs).

Flujo.
Es la cantidad de fluido que pasa a través de la sección por unidad de tiempo. Por ejemplo, en cierta tubería puede haber un régimen de flujo de 100 galones de agua por minuto. Esto quiere decir que durante cada minuto que transcurre pasan 100 galones de agua. Si se considera el numero de galones que van a pasar a partir de cierto momento, después de dos minutos 200 galones, etc. Si el régimen de flujo se mantiene con el mismo valor, después de cierto tiempo habrá pasado un numero total de galones igual al régimen de flujo multiplicado por el tiempo transcurrido; por ejemplo, después de 15 minutos habrán pasado 100 x 15 = 1.500 galones.
Al contrario dividiendo el número total de galones entre el tiempo, se obtiene el régimen de flujo. En el ejemplo anterior 1.500/15 = 100 gal/min.
La cantidad de cierto líquido, gas o vapor se puede medir en unidades de masa, y el régimen de flujo en unidades de masa por unidad de tiempo, por ejemplo, en libras por hora. De hecho, en la práctica se utilizan dichas unidades, especialmente cuando se trata de vapor de agua.
Pero con mucha frecuencia se mide la cantidad de un fluido en unidades de volumen y el régimen de flujo en unidades de volumen por unidad de tiempo, por ejemplo, galones por minuto, barriles por día, pies cúbicos por hora. Generalmente la cantidad de agua se mide en galones a 60 °F, la de otros líquidos manejados en la industria del petróleo, en barriles a 60 °F; la cantidad de gas en pies cúbicos a 60 °F y 14.7 lb/plg.
El medidor de flujo doble consta de dos manómetros que se montan en la parte posterior de un instrumento sencillo, siendo posible para ambos registrar sobre la misma grafica. Este montaje es a veces muy útil para mantener condiciones de equilibrio entre dos caudales.
El medidor de flujo de doble rango. Consiste en un captador de caudal conectado a dos tubos de rango, como se muestra en la figura 3-1 que representa la versión de las Taylor Instruments Company. Su propósito es contrarrestar la poca sensibilidad que presenta un captador de presión diferencial, en la parte baja de la escala de caudal. Para ello se disponen sobre el mismo captador dos cámaras de rango o escala; la primera actúa entre 0 y el 25 % del caudal y la otra lo hace entre el 25 % y el 100 %.
Figura 3-1 Vista posterior de un medidor de doble rango.
(Cortesía de Taylor Instrument Co.).
Los captadores hasta ahora descritos transmiten el desplazamiento del flotador o la inclinación de la balanza tórica, por medio de juegos de palancas, levas, u otro dispositivo mecánico, a un eje que gira arrastrando la pluma del registrador. Este eje ha de salir al exterior atravesando la pared de la cámara del flotador, que esta bajo presión. Esto se consigue por medio de una chumacera o cojinete estanco que, para no falsear la medida ha de producir el mínimo rozamiento posible sobre el eje.
Se utilizan frecuentemente sistemas de medida de caudal con transmisión eléctrica, cuando el instrumento de medida o registro se localiza lejos del elemento primario. Para ello se dispone de varios métodos.
El método de conductividad es utilizado por la Republic Flow Meters Company. Se utiliza la elevación del nivel del mercurio en la rama de baja presión de un tubo U para variar la resistencia de un circuito eléctrico (fig. 3-2). La corriente eléctrica que fluye por este circuito será, por tanto, función de la presión diferencial aplicada al cuerpo medidor y en consecuencia función de la velocidad del fluido que atraviesa el elemento primario.
Figura 3-2 Esquema del método de conductividad.
Los captadores de caudal de este tipo utilizan un reten en lugar de la placa con orificio u otra restitución del flujo. Miden la fuerza con que la corriente fluida choca contra una superficie interpuesta en su camino, como se muestra en la figura 3-3, para un captador fabricado por la Foxboro Company. El reten, de forma circular y bordes afilados, apropiado para el margen de caudal a medir, se fija al extremo bajo de la barra de fuerza y queda exactamente centrado con la tubería.
El empuje que el fluido ejerce sobre el reten tiende por medio de la barra de fuerza, a variar la distancia entre la tapa o paleta y la tobera, lo que provoca la variación de la presión de aire en el relevador, en los fuelles de retroalimentación y en la salida de señal hacia el receptor.
Figura 3-3 Medidor de reten (cortesía de Foxboro Co.).
Cuando el fluido se mueve en canales abiertos, se utilizan otros medios de medición. Generalmente se requiere algún tipo de vertedero o angostura, que proporcionan restricciones al paso del fluido. En la figura 3-4 se muestra un vertedero de compuerta cortada en V, que puede utilizarse hasta caudales de 6000 galones por minuto; la abertura rectangular de lazos se recomienda para caudales mayores. Cuando las pérdidas de altura deben ser mínimas o si el líquido medio contiene considerables cantidades de sólidos, sedimentos, etc., se prefiere una angostura. Una de las formas que más se utiliza es la angostura Parshall que se muestra en la figura 3-5.
Figura 3-4 Instalación de angostura Parshall. (Cortesía de Foxboro Co.)